|
INTENSIFICATION OF BIOGAS EXTRACTION BY USING MAGNETIC AND ELECTROMAGNETIC Fields
V. Kovalenko1, Є. Kuznetsovа2, V. Kuznetsov2
1 Ukraine, Zaporizhia, Zaporizhia National University
2 Ukraine, Dnipro, National Metallurgical Academy of Ukraine
АBSTRACT
Purpose. To investigate the effectiveness of stimulating the release of biogas from a bovine substrate under the influence of magnetic and electromagnetic fields of a certain intensity under thermophilic and mesophilic temperature conditions. The methodology. Experimental studies on the basis of a laboratory biogas plant, consisting of a bioreactor connected to a system for collecting and maintaining biogas, makes it possible to determine the dynamics of release and its total amount. The reactor part is equipped with a system for influencing the substrate with the indicated fields with the ability to control the intensity of the latter. Thus, empirically, it is possible by the method of successive approximation to determine the optimal value of induction, at which the release of the biogas mixture is intensified. The studies were carried out on a bovine substrate under thermophilic and mesophilic modes of bioreactor operation. Findings. As a result of the research, it was found that exposure to constant magnetic and electromagnetic fields with an intensity of up to 15 mT on the substrate at thermophilic and mesophilic temperature conditions can increase the volume of biogas mixture release by 12-14%, compared to the experiment without using such a field. It was also found that, in addition to increasing the productivity of the meteorological tank, it is possible to shorten the biomethanogenesis cycle by 1-2 days and, thus, increase the overall energy efficiency of the biogas plant. The originality. As a result of the analysis of the obtained experimental data, a range of intensity of constant magnetic and electromagnetic fields was established, which allows stimulating the vital activity of bacteria involved in the production of biogas and increasing the volume of its release up to 14% under the conditions of thermophilic and mesophilic modes of bioreactor operation. Practical implications. A series of experiments has led to the conclusion that the influence of constant magnetic and electromagnetic fields of a certain intensity stimulates the process of biogas release. Keywords: biogas, biomethanogenesis, bioenergy, biogas plant, magnetic field, electromagnetic field.
REFERENCES
1. Kachan, Yu.G., Kovalenko, V.L., Lapikova, O.I. (2015). Analiz efektivnosti ta perspektiv rozvitku biogazovoyi energetiki. Zbirnik Mizhnarodnoyi konferenciyi «Vidnovlyuvana energetika 21 stolittya». Kiyiv. 353-355. 2. Kachan, Yu.G., Kovalenko, V.L., Lapikova, O.I. (2016). Shodo vplivu elektrichnih poliv ta mikrohvilovogo viprominyuvannya na mikroorganizmi, zadiyani v biometanogenezi. Energetika: ekonomika, tehnologiyi, ekologiya, KPI, Kiyiv. № 4. 3. Kachan, Yu.G., Kovalenko, V.L., Lapikova, O.I. Fizichna model biogazovoyi ustanovki z pristroyem vplivu na substrat elektrichnimi i magnitnimi polyami. Zbirnik XVII Mizhnarodnoyi konferenciyi «Vidnovlyuvana energetika ta energoefektivnist u HHI stolittya». KNU, Kiyiv. 4. Hones, I.; Pospischil, A.; Berg, H. (1998). Electrostimulation of proliferation of the denitrifying bacterium Pseudomonas stutzeri. Bioelectrochem. Bioenerg. 44. 275–277. 5. Justo, O.R.; Perez, V.H.; Alvarez, D.C.; Alegre, R.M. (2006). Growth of Escherichia coli under extremely low-frequency electromagnetic fields. Appl. Biochem. Biotechnol. 134. 155–163. 6. Hirano, M.; Ohta, A.; Abe, K. (1998). Magnetic field effects on photosynthesis and growth of the cyanobacterium spirulina platensis. J. Ferment. Bioeng. 86. 313–316. 7. Li, Z.-Y.; Guo, S.-Y.; Lin, L.; Cai, M.-Y. (2007). Effects of electromagnetic field on the batch cultivation and nutritional compostion of Spirulina platensis in an air-lift photobioreactor. Bioresour. Technol. 98. 700–705. 8. Takahaski, F.; Kamezaki, T. (1985). Effect of magnetism of growth of Chlorella. Hakkokogaku. 63. 71–74. 9. Yamaoka, Y.; Takimura, O.; Fuse, H.; Kamimura, K. (1992). Effect of magnetism on growth of Dunaliella salina. Res. Photosynth. 3, 87–90. 10. Erygin, G.D.; Pchedlkina, V.V.; Kulikova, A.K.; Rurinova, N.G.; Bezborodov, A.M.; Gogolev, M.N. (1988). Influence on microorganism growth and development of nutrient medium treatment with magnetic field. Prikl. Biokhim. Mikrobiol. 1988, 24, 257–263. 11. Fiedler, U.; Grobner, U.; Berg, H. (1995). Electrostimulation of yeast proliferation. Bioelectrochem. Bioenerg. 38. 423–425. 12. Engstrom, S.; Markov, M.; McLean, M.; Holcomb, R.; Marko, J. (2002). Effects of non-uniform static magnetic fields on the rate of myosin phosphorylation. Bioelectromagnetics. 23. 475–479. 13. Smith, S.; McLeod, B.R.; Liboff, A.R.; Cooksey, K. (1987). Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics, 8, 215–227. 14. Blackman, C.; Benane, S.G.; House, D.E.; Elliott, D.J. (1990). Importance of alignment between local DC magnetic field and an oscillating magnetic field in response to brain tissue in vitro and in vivo. Bioelectromagnetics. 11. 159–167. 15. Reese, J.; Frazier, M.E.; Morris, J.E.; Buschbom, R.L. (1991). Evaluation of changes in diatom mobility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics. 12. 21–25. 16. Blackman, C.; Blanchard, J.P.; Benane, S.G.; House, D.E. (1996). Effect of AC and DC magnetic field orientation on nerve cells. Biochem. Biophys. Res. Commun. 220, 807–811. 17. Pilla, A.A.; Kaufman, J.J.; Ryaby, J.T. (1987). Electrochemical kinetics at the cell membrane: A physicochemical link for electromagnetic bioeffects. In Mechanistic Approaches to Interaction of Electric and Electromagnetic Fields with Living Systems; Blank, M, Findl, E., Ed.; 39–61.
18. Kovalenko V.L. Shodo vplivu magnitnih poliv na zadiyani v biometanogenezi mikroorganizmi. Vidnovlyuvana energetika. Naukovo-prikladnij zhurnal. – 2017. – №1. – 87-92. |